
Resilience-Patterns in

Cloud-Applications
Kristian Köhler

Software design as taught today

is terribly incomplete. It talks only

about what systems should do.

It doesn’t address the converse - things

systems should not do. Michael T. Nygard

The question is not

IF an error occurs,

It’s about WHEN

an error occurs.

With 40000 requests, there are

at least 40000 possible errors.

The concept of resilience in the software industry

●Origins in materials science

Return to original shape after „deformation“, impuls, stress

●Transactions can be processed despite errors or stress

Short-term failures, load peaks, etc

Focus not purely on the stability of the system

Goal: users can still get their work done - ‘unit of work’

●The ability of a system to react to unexpected errors

Without the user noticing

Possible shutdown/degrade of a service

Integration points are the

number-one killer of systems.
Michael T. Nygard

Preventing the spread - Cascading Failures

● System failures start with a small crack

„System X does not respond fast enough“

„Database Y is down“

„Message processing runs into an error“

● „Cracks propagate“

● Stop cracks and prevent the spread

Stop cracks from „jumping the gap“

Introduce predetermined breaking points

„Crackstoppers“ - James R. Chiles

Pattern catalogues and languages

● Release It! - Design and Deploy Production-Ready Software

Michael T. Nygard

● Microsoft Azure – Microservice Patterns

https://learn.microsoft.com/en-us/azure/architecture/patterns/

● Well architectured Frameworks

AWS, Google, Microsoft

Quelle: https://anjireddy-kata.medium.com/architecture-and-design-101-resiliency-patterns-in-microservices-71029bbb92b7

Who am i?

Kristian Köhler
Source Fellows GmbH

https://www.source-fellows.com

https://www.linkedin.com/in/kristian-köhler/

25+ years in software engineering
Java Enterprise background

Javascript, Python, C#, etc etc

Timeouts

Timeouts

● Timeout controls cancellation of processing

Blocked threads can make a system hang

Deadlocks

No more response is expected (server and client side)

● Timeouts provide isolation from failures

External error does not aA ect own system

External systems are connected via the network

Networks can fail (Router, Switch, Firewall, Cable …)

External systems themselves can be unstable

→ Events possible at any time

Resource Pools can be exhausted

The
Timeouts pattern
is useful when you
need to protect

your system from
someone else’s

Failure.
Michael T. Nygard

Timeouts – Integration Points – What to do?

● Check each Integration Point separatly

Slow responses can also lead to problems

Avoid blocking threads! Everywhere!

● Think about possible retries

Fast retries are very likely to fail again

Use something like „exponential backoA s“

Maybe: place request in queue and execute later

Timeouts in libraries

● Default values in libraries usually suboptimal

Often no timeout conH gured→ blocking thread

● Libraries usually o; er good con< guration options

Check which timeout values can be set

Use suitable values for the usecase (Example: HTTP-Streaming)

● Each access to a resource should be con< gured with pooling

Don't wait forever! → blocking thread

Timeouts

in Go

Go Context - API

● For deadline or cancellation

● Also for call-dependent values

Request-Scoped Values

“ThreadLocal”

● Context should be included with every call

H rst parameter named „ctx“

Propagation through application

Implementation in standard library

Go Context – you should know...

● Context objects are immutable - „Immutable Objects“

Can be passed as parameter to Go-Routinen without problems

No synchronisation necessary

● Context objects form a hierarchie

Propagation of status through hierarchy (Timeout, ...)

● Information about cancellation of a context via channel

ctx := context.Background()
ctx, cancel := context.WithTimeout(ctx, 2*time.Second)
defer cancel()

<- ctx.Done()

Examples in Go APIs

● Standardlibrary

Network connections (Example net.Dial)

Integration in a lot of libraries possible

HTTP-Client and server

SQL/DB Package

● NoSQL- Database

MongoDB driver

● Messaging

Nats.io, Kafka

ctx:= context.Background()
for {

msg, err :=
 reader.ReadMessage(ctx)

if err != nil {
break

}
...

}

http.NewRequestWithContext(...)

Sample

Use

context.Context

whenever possible!

HTTP-Client

in Go

Go HTTP-Client – With and without context.Context

response, err := http.Get("http://source-fellows.com")
if err != nil {

log.Fatal(err)
}
defer response.Body.Close()

ctx:= context.Background()
req, err := http.NewRequestWithContext(ctx, http.MethodGet, "url", nil)
response, err := http.DefaultClient.Do(req)
if err != nil {

return
}
defer response.Body.Close()

HTTP-Client Timeouts

● Timeout values can be con< gured for „HTTP-client“-objects

Global conH guration of the „DefaultClient“

Use of a separate client for each backend

● Default timeout values not suitable for production

Timeout-Value of 0 → inH nite!

Context object helps if timeout is speciH ed there

http.DefaultClient.Timeout = 3*time.Second

client := http.Client{Timeout: 3*time.Second}
client.Do(...)

Timeout con< guration of the Golang HTTP-Client

Quelle: https://blog.cloudN are.com/the-complete-guide-to-golang-net-http-timeouts/

ToxiProxy – Test Harness

● „Toxiproxy is a framework for simulating network conditions“

A TCP proxy written in Go

Manipulate the health via HTTP

● Created at Shopify

OpenSource - MIT License

https://github.com/Shopify/toxiproxy

● Go and other language client libraries available

Sample

Always think about

Timeouts

and con< gure

them accordingly.

Circuit

Breaker

„Fuse for stable and

high-performance system“

Circuit Breaker – The fuse for backends

● When there’s a diB culty with an integration point, stop calling it

Too many or certain errors

● Use together with useful Timeouts

A timeout indicates that there is a problem with an integration point

Blocking calls are not seen as errors without a timeout

● Expose, track and report status changes on the Circuit Breaker

Indicator for serious problems

Circuit Breaker Pattern

Circuit Breaker in Go

● GoBreaker – OpenSource library

Circuit Breaker implemented in Go - MIT Lizenz

https://github.com/sony/gobreaker

● Wrapping for methods or functions

Any errors that occur are used for status determination

func (cb *CircuitBreaker[T]) Execute(req func() (T, error)) (T, error)

Sample

Circuit Breaker – Use with caution...

● Pay attention dependencies

What does the failure mean for other components?

Are other components prepared for faults?

● Think of possible chain reaction

Backend-call always returns an error

What impact does this have (for other systems)?

Error may occur faster...

Possibly stop entire components as a reaction

Use context.Context to stop things and possible whole components

Protect each

Integration Point

with a

Circuit Breaker.

Bulkhead

As in shipping, ‘bulkheads’ are designed

to prevent the failure of one component

from a; ecting the entire system.

Bulkhead

● Partitioning the system

Redundancy of systems is the simplest option

Example: Assign servers to speciH c tasks

Separation within applications

● Dependencies between applications via third-party applications

Separation within application necessary

Bulkhead-Variants

● Thread Pool Bulkhead

Pools for diA erent tasks or operations (e. g. Frontend / Backend Pools)

● Service Bulkhead

Separate individual services from each other (e. g. Microservices)

„Safety“ through resource requirements

● Database Bulkhead

Separate connection pools, partitions (e. g. separate read and write operations)

● Infrastructure Bulkheads

Network, Process, Resource Bulkheads

Separation of the connections (e. g. Management-Network)

Separation of individual processes on diA erent physical machines

Splitting ressources (e. g. CPU, memory, etc)

Bulkhead in Go

●Use separate pools for integration points

HTTP-Client has a pool for server connections

ConH gure own HTTP-Clients

● Separation of incoming connections

DiA erent ports for diA erent services or management

Use special Listener for connection pooling

Default implementation is limited through operating system

E. g. https://pkg.go.dev/golang.org/x/net/netutil#LimitListener

● Enable server start even without backend

Lazy-Init, retries, Circuit-Breaker

Sample

De< ne separate

modules/components

and make them

independent from

each other.

Steady State

The system should be able to run inde< nitely

without human intervention. Michael T. Nygard

Steady State

● Systems collect data - sometimes without cleanup

Logs, Database, User-Uploads, ...

● Cloud storage tempts you to keep your data - forever

● Set up a cleanup for each collection mechanism

Delete, compress, archive old data as soon as possible

● Too much data can lead to instability

Long loading times, higher latency, higher load

Memory runs out while loading... It sometimes seems that you’ll be lucky if the system ever runs at all

in the real world. The notion that it will run long enough to

accumulate too much data to handle seems like a “high-class

problem”—the kind of problem you’d love to have.

Do not allow any e; ect due to steady state!

● Integrate Cleanup Jobs

Plan, implement and check at the beginning

Determine sensible lifespan and data volume

● Add Memory-Caches to your applications

DeH ne limits for for quantity structure

● Restrict queries or paging when loading

To ensure stability when more data is collected than expected

Fail Fast

If slow responses are worse than no response,

the worst must surely be a slow failure response.
Michael T. Nygard

Fail Fast

● Check whether resources are available before starting a transaction

In combination with Circuit Breaker Status

● Fail as soon and quickly as possible !

Do not wait to see if the system reacts after all (E. g. Load-Balancer)

● Early validation of user input or API parameters

Check values as soon as possible e. g. in HTTP-Handler

Reject requests that could cause problems later on

● Provide appropriate error messages

DiA erentiation between user and system errors

Sample

Decoupling

Synchronous call-and-

response forces the

caller to stop.

Synchronous calls

lead to cascading errors.

Messaging can decouple systems

● A Central broker takes care of the entire message management

Sender and Consumer send or receive messages

Message persistence is possible and enables delayed delivery

● Messaging leads to decoupled timelines of sender and receiver

Sender does not have to wait for an answer

Avoid cascading errors

Splits a unit-of-work transaction into several technical transactions

● Increases the complexity of the application

Response (including errors) must be processed asynchronously

New infrastructure components

Sample

Loose coupling

with

messaging.

Thank you

for your

attention!

